OPERATIONS RESEARCH

www.coe.neu.edu/degrees/interdisciplinary-engineering

HAN CHEN HUANG, PhD
Professor and Chair
NADER JALILI, PhD
Professor and Associate Chair for Graduate Studies and Research
EMANUEL S. MELACHRINOUDIS, PhD
Associate Professor, Associate Chair, and Director of Operations Research Graduate Program

334 Snell Engineering Center
617.373.2740
617.373.2921 (fax)
Katherine Swan, Business Manager, k.swan@neu.edu

Operations research (OR) deals with the application of scientific methods to decision making. Students have an opportunity to learn how to develop and solve mathematical and computer models of systems using optimization and statistical methods. OR graduates work in a wide variety of fields, such as transportation, supply chain operations, communications and computer operations, manufacturing, finance, and healthcare. The OR program is offered jointly by the Department of Mechanical and Industrial Engineering (MIE) and the Department of Mathematics, thus achieving a unique balance of theory and application.

Master of Science Degrees

REQUIREMENTS

To be eligible for admission to any of the Master of Science (MS) degree programs, a prospective student must hold a Bachelor of Science degree in engineering, science, mathematics, or an equivalent field. Students in all master’s degree programs must complete a minimum of 32 semester hours of approved course work (exclusive of any preparatory courses) with a minimum GPA of 3.000. Students may pursue any program either on a full- or part-time basis; however, certain restrictions may apply as described below.

Students who receive financial support from the university in the form of a research, teaching, or tuition assistantship must complete an 8-semester-hour thesis. Other students may choose to complete a thesis, project, or pursue their degree on a coursework-only (also known as nonthesis) basis. Students who complete the thesis option must make a presentation at a thesis defense before approval by the department.

SPECIAL COURSE REQUIREMENTS

All MIE MS students in thesis or project options (excluding MS students in engineering management and Gordon Engineering Leadership programs), who have entered in or after the fall 2012 semester, must complete MEIE 6800 Technical Writing and MEIE 6850 Research Seminar in Mechanical and Industrial Engineering, preferably during their first year of full-time study. If appropriate, part-time students may petition the graduate affairs committee to waive these requirements. Students in combined BS/MS programs who entered in or after fall 2014 must take MEIE 6850 as part of their course work requirement, while MEIE 6800 is optional for these students.

All MIE graduate students are also required to complete a brief online session on Responsible Conduct of Research and Plagiarism in one of these courses. The outcome of the online session will be filed with the student’s records.

ACADEMIC AND RESEARCH ADVISORS

All nonthesis students are advised by the academic advisor designated for their respective concentration or program. Thesis-option MS students must find a research advisor within their first year of study and may have thesis reader(s) at the discretion of their research advisor. The research advisor must be a full-time faculty or affiliated member of the MIE department; otherwise, a petition must be filed and approved by the MIE graduate affairs committee. If the research advisor is outside the MIE department, a faculty member with 50 percent or more appointments in the MIE department must be chosen as co-advisor. Thesis-option students are advised by the academic advisor of their concentration before they select their research advisor(s).

PLAN OF STUDY AND COURSE SELECTION

It is recommended that all new students attend orientation sessions held by the MIE department and the Graduate School of Engineering to acquaint themselves with the course work requirements and research activities of the department as well as with general policies, procedures, and expectations.

In order to receive proper guidance with their course work needs, all MS students are strongly encouraged to complete and submit a signed Plan of Study (PS) to the department before enrolling in second-semester courses. This form helps the students in managing their course work as well as helping the department to plan for offering the requested courses. The PS form may be modified at any time as the students proceed in their degree programs. However, requests for changes in PS must be processed before the requested change actually takes place. A revised PS form must also be approved and signed by the student’s academic advisor.

Operations research students must select all required course work, typically consisting of six or more courses, from the list below. Each student’s academic advisor must approve all courses prior to registration. Students may not use any courses taken without the approval of the academic advisor toward the 32-semester-hour minimum requirement. However, students may petition the MIE graduate affairs committee to substitute no more than one (4-semester-hour) graduate-level course from outside the approved list of electives. This may include independent study. An independent study must be approved by the research advisor (for thesis option) and academic advisor (for nonthesis option). The petition must clearly state the reason for taking the course; a brief description of the goals; as well as the expected outcomes, deliverables, and grading scheme.
Course Work Option

Select one of the following options:

OPTIONS

Select one of the following options:

Course Work Option

Complete four of the following courses:

Course

Work Only

With Project

With Thesis

IE 6200
Engineering Probability and Statistics
4 SH

IE 6200
or MATH 7241
Probability 1
4 SH

OR 7245
Network Analysis and Advanced Optimization
4 SH

or MATH 7234
Optimization and Complexity
4 SH

OR 7230
Probabilistic Operation Research
4 SH

OR MATH 7341
Probability 2
4 SH

OR 6205
Deterministics Operations Research
4 SH

NORTHEASTERN UNIVERSITY
IE 7215 Simulation Analysis 4 SH
IE 7275 Data Mining in Engineering 4 SH
IE 7280 Statistical Methods in Engineering 4 SH
IE 7285 Statistical Quality Control 4 SH
IE 7290 Reliability Analysis and Risk Assessment 4 SH
IE 7315 Human Factors Engineering 4 SH
INFO 6205 Program Structure and Algorithms 4 SH
INFO 6210 Data Management and Database Design 4 SH
MATH 7232 Combinatorial Analysis 4 SH
MATH 7233 Graph Theory 4 SH
MATH 7342 Mathematical Statistics 4 SH
MATH 7346 Time Series 4 SH
MATH 7347 Statistical Decision Theory 4 SH
MATH 7349 Stochastic Calculus and Introduction to No-Arbitrage Finance 4 SH
OR 7235 Inventory Theory 4 SH
OR 7240 Integer and Nonlinear Optimization 4 SH
OR 7245 Network Analysis and Advanced Optimization 4 SH
OR 7250 Multi-Criteria Decision Making 4 SH
OR 7260 Constraint Programming 4 SH
OR 7310 Logistics, Warehousing, and Scheduling 4 SH

Thesis Option

THESIS
Requires 8 semester hours:
- OR 7990 Thesis 1 to 8 SH
- MEIE 6800 Technical Writing Seminar 0 SH
- MEIE 6850 Research Seminar in Mechanical and Industrial Engineering 0 SH

ELECTIVES
Complete two of the following courses:
- CS 5800 Algorithms 4 SH
- CS 6140 Machine Learning 4 SH
- CS 7805 Theory of Computation 4 SH
- CSYE 6200 Concepts of Object-Oriented Design 4 SH
- CSYE 6210 Component Software Development 4 SH
- EECE 7313 Pattern Recognition 4 SH
- EECE 7360 Combinatorial Optimization 4 SH
- EMGT 5220 Engineering Project Management 4 SH
- EMGT 5300 Engineering/Organizational Psychology 4 SH
- EMGT 6225 Economic Decision Making 4 SH
- EMGT 6305 Financial Management for Engineers 4 SH
- IE 5400 Healthcare Systems Modeling and Analysis 4 SH
- IE 5500 Systems Engineering in Public Programs 4 SH
- IE 5617 Lean Concepts and Applications 4 SH
- IE 5620 Mass Customization 4 SH
- IE 5630 Biosensor and Human Behavior Measurement 4 SH
- IE 6300 Manufacturing Methods and Processes 4 SH
- IE 7200 Supply Chain Engineering 4 SH
- IE 7215 Simulation Analysis 4 SH
- IE 7275 Data Mining in Engineering 4 SH
- IE 7280 Statistical Methods in Engineering 4 SH
- IE 7285 Statistical Quality Control 4 SH
- IE 7290 Reliability Analysis and Risk Assessment 4 SH
- IE 7315 Human Factors Engineering 4 SH
- INFO 6205 Program Structure and Algorithms 4 SH
- INFO 6210 Data Management and Database Design 4 SH
- MATH 7232 Combinatorial Analysis 4 SH
- MATH 7233 Graph Theory 4 SH
- MATH 7342 Mathematical Statistics 4 SH
- MATH 7346 Time Series 4 SH
- MATH 7347 Statistical Decision Theory 4 SH
- MATH 7349 Stochastic Calculus and Introduction to No-Arbitrage Finance 4 SH
- OR 7235 Inventory Theory 4 SH
- OR 7240 Integer and Nonlinear Optimization 4 SH
- OR 7245 Network Analysis and Advanced Optimization 4 SH
- OR 7250 Multi-Criteria Decision Making 4 SH
- OR 7260 Constraint Programming 4 SH
- OR 7310 Logistics, Warehousing, and Scheduling 4 SH

Leadership Challenge Project
- OR 7440 Leadership Challenge Project 2 SH

Engineering Leadership Option
- Students completing this option receive the graduate certificate in engineering leadership in addition to the master’s degree.

LEADERSHIP
- ENLR 5121 Engineering Leadership 1 2 SH
- ENLR 5122 Engineering Leadership 2 2 SH

FOUNDATIONS
- ENLR 5131 Scientific Foundations of Engineering 1 2 SH
- ENLR 5132 Scientific Foundations of Engineering 2 2 SH

PROJECT
- OR 7440 Operations Research Engineering Leadership Challenge Project 1 4 SH
- OR 7442 Operations Research Engineering Leadership Challenge Project 2 4 SH

PROGRAM CREDIT/GPA REQUIREMENTS
32 total semester hours required
Minimum 3.000 GPA required

Note that these pages are extracted from the full Graduate Catalog, please refer to it for complete details.